
Audience and complexity

aware live video encoders orchestration

CITE THIS ARTICLE

Abdelmajid Moussaoui

Thomas Guionnet

Mickael Raulet

Moussaoui, Abdelmajid; Guionnet,Thomas; Raulet, Mickael; 2022. Audience and complexity aware live video encoders orchestration. SET
INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING. ISSN Print: 2446-9246 ISSN Online: 2446-9432. doi: 10.18580/setijbe.2022.5. Web
Link: http://dx.doi.org/10.18580/setijbe.2022.5

cQ G) �COPYRIGHT This work is made available under the (reative Commons - 4.0 lnternational License. Reproduction in whole or in part
i�:::&1-m,1111!!!!!!!!!-is permitted provided the source is acknowledged.

56

Audience and complexity aware live video

encoders orchestration

Abdelmajid Moussaoui, Thomas Guionnet, and Mickael Raulet.

Ateme {a.moussaoui, t.guionnet, m.raulet}@ateme.com

Abstract-Video encoding services are known to be

computationally intensive. ln a software environment, it is

desirable to be able to adapt to tbe available computing

resources. Therefore, modem live video encoders bave tbe

"elasticity" feature. That is, their algoritbmic complexity adapts

automatically to the number and capabilities of available CPU

cores. ln otber words, tbe more CPU are allocated to a live video

encoder, tbe higher the encoding performance. Until recently,

tbe elasticity feature was used as an ad-hoc adaptation to

uncontrollably varying conditions. ln this paper, mechanisms

allowing to take control of the computing resource are

presented. Two real-time resource optimizations strategies are

then proposed. The first one is based on video content

complexity and manages the video head-end costs, while the

second relates to audience measurements and targets network

bandwidth usage optimization.

Index Terms-Video compression, live encoding, Kubernetes,

orcbestration

1. INTRODUCTION

ln the field of video encoding, microservices architecture is
becoming more and more beneficial over monolithic
applications. Toe concept of microservices [1][2] allows a
dramatic reduction of the design and implementation cycles
durations and simplifies support and update of the
applications. The virtualization concept on the other hand,
allows being highly flexible and independent ofthe hardware.
ln the case of video compression, where performance is
critical, the optimal granularity of the microservices must be
optimized under constraints of real-time, low-latency,
efficient data flow and availability. Practically, microservices
must be stored in containers. The high number of containers
requires orchestration. Among many available solutions
[4][5][6], the work presented in this paper relies on Docker
[7] for containerization and Kubemetes [5] for orchestration.

The video encoding solution considered in this paper is
composed of several independent services which are thus
managed by Kubemetes. However, the performance of a
practical implementation of a video encoder is a trade-off
between bitrate, perceived video quality, computing resource
and architecture design. Kubemetes allows controlling the
number of resources dedicated to each microservice. Thus, in
the video compression context, one may consider allocating
the resource non uniformly to different video services,
depending on the desired trade-off for each video service.
This must be carried out explicitly by the user though, since

Kubemetes, as an orchestrator, is blind to the specifics of
each application.
The proposed allocation solution will leverage previously
introduced method [8] to seamlessly update the CPU for a
service running on Kubemetes without service interruption.
A full experimental system is demonstrated, applying the
proposed dynamic resource allocation to a set oflive encoders
deployed in a Kubemetes environment. The rest ofthis paper
is organized as follows: first, some elements of context and
preliminary results are provided. Then two versions of the
custom-orchestrator are detailed, complexity-based and
audience-based. Finally experimental results are provided for
each mode before conclusion.

II. CONTEXT, ELASTICITY AND CPU ALLOCATION

A given video encoder implementation can provide several
trade-offs between resource consumption and video quality.
This is the case, for example, with the High Efficiency Video
Coding (HEVC) implementation x265 [9]. The tuning

parameter (-preset) allows choosing a speed/coding

performance trade-off in a range of predetermined settings. ln
this paper, the considered encoder adapts automatically to the
available computing resources. That is, given the real-time
constraint, the encoder chooses its parameters automatically
depending on the platform capacity and current load. This
tuning is updated dynamically. If the overall load of the
platform changes, the tuning changes accordingly. The more
computing resources available, the better the delivered
coding efficiency. This concept is called video encoder
elasticity [14].

As an illustration of the elasticity concept, example
experiments have been conducted using the HEVC codec in
its default configuration. All the considered video sequences
have a 1080p (high definition, HD) resolution. Fig. 1 presents
rate-distortion curves [12] for several encodings ofthe sarne
12 minutes movie extract. Each encoding is performed in
real-time, with a fixed number of central processing unit
(CPU) cores allocated to the corresponding microservice. ln
the video compression context, a rate-distortion curve
illustrates the trade-off between bitrate and distortion (or
quality) achieved by an encoder implementation or
configuration. A configuration is found to be better than a
reference configuration if its rate-distortion curve is above the
reference rate-distortion curve. That is, for a given distortion,
the bitrate is found to be lower, or conversely, for a given
bitrate, the quality is found to be higher. The experimental
observations confirm that the encoder adapts to the available

Th1s open access article Is distnbuted under a Creat1ve Commons Attnbut1on (CC-BY) license

http / /www.set.org.br/ijbe/ doi: l 0.18580/setijbe 2022.5 Web Link http / /dx.doi.org/10.18580/setiJbe.2022 5

57

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 5, Bp
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

computing resource. lndeed, all the curves of Fig. 1 have
been generated with strictly the sarne configuration, except
for the number of CPU allocated. Thus, the rate-distortion
performance improves as the CPU number increases.

46

44

co 42
�

� 40

38

2

Bitrate Gain

- 5 CPU Cores

- 8CPU Cores

- 10 CPU Cores

- 20 CPU Cores

4 6 8
Bitrate (Mbps)

10 12

Fig. 1: Rate-Distortion curves for different CPU core allocations.

11.4
N

� 11.2

r<

� 11.0
e

e

� 10.8

� 10.6
"'
- 10.4
o

� 10.2

10.0'---,---------------,-J

[5-151 [8-12] (10-10] (12-8] (15-5]

CPU Allocation [channell - channel2)

Fig. 2: Sum ofMean Squared Errors (MSE) for different CPU

allocations among two video channels.

ln a second experiment, the encodings of two different 12

minutes movie extracts are considered. Toe two contents have

the sarne resolution and are both encoded using HEVC. An

arbitrary fixed budget of 20 CPU cores is allocated to be

shared between the two encoders. One must note that this

fixed CPU budget is shared in a controlled manner between

the two channels. A first part is allocated exclusively to the

first channel, and the remaining part is allocated exclusively

to the second channel. One may split it even and allocate 1 O

CPU cores to each channel or decide to allocate more CPU

cores to one ofthe channels. The goal ofthis experiment was

to find the optimal repartition of these 20 CPU cores between

the two encoders, which minimizes the distortion for a given

bitrate. The experiment showed that the allocation that

maximizes the overall quality is not uniform, as illustrated on

Fig. 2.

Both encoders have the sarne configuration, the difference

is the encoded content itself. The channel 2 contains more

complex content compared to channel 1. A video sequence is

said to be more complex if it contains more information, like

more motion or image texture, than the other sequence. The

encoder must make more effort on a complex sequence to

achieve the sarne coding efficiency as on a simple sequence.

Ili. COMPLEXITY BASED ORCHESTRATION

A. Dynamic CPU allocation

The second experiment (Fig. 2) showed that for two

channels with the sarne configuration, the allocation that

minimized the distortion - thus maximizes the video quality

- is not a uniform allocation, but rather a CPU cores

distribution where the channel with high content complexity

needs to be allocated more than the lower content complexity

channel. Additionally, it is well known that the characteristics

of contents are not constant in time. This is especially true for

a 24/7 live channel. With a limited number of computational

resources, dynamic resource allocation can improve the

overall compression efficiency of a set of live channels.

The encoders run as part of a micro-services application in

a Kubemetes cluster. All encoding services are running in

Pods, the smallest Kubemetes manageable unit. A Pod

contains one or several containers, and the hardware

resources (CPU, memory, ...) are managed at the container

level. Toe native and supported way for Kubemetes to update

the resources allocated to a container in a given Pod is to stop

and restart the Pod with the desired resources allocation.

For a live video encoder, the reboot of the Pod even for

milliseconds will lead to the loss of multiple video frames.

However, service interruption of a live service is not

acceptable. ln a previous work [8] authors proposed a method

for dynamic resource allocation for Kubemetes Pods with

zero downtime.

The allocation system relies on an interaction between

operating system features and Kubemetes <levice plugin

feature [11]. lt consists in updating the number ofresources

advertised to the Kubemetes scheduler and changing the

current allocation using the Linux system tools in a way that

is transparent to Kubemetes.

11ndCPU1.tatus

Set Real-lime PfiOnty 101' lhe
App and Updala CPU AIIInity

.. ,,_
llllocalionancl
CPUstlltus

Master

()

UpdntecpuquolBlor
ct. corrasponding Pod

Cont8f1t charactertsllai ;!(,!-1��!!9.Çl�Jle!.;...---+---1---� �-----------�

Fig. 3: Resources updating and orchestration process.

Fig. 3 present the interaction between Kubemetes cluster

and the dynamic allocation service (PodHandler). The

PodHandler gets the new allocation computed by the

orchestrator, then interacts with the <levice plugin to update

the number of custom resources advertised to Kubemetes

Scheduler, the next step is to update the Pod's Cgroups [10]

Completely Fair Scheduler Quota (CFS Quota) that controls

the Pod's CPU usage limit. Linux tool taskset is used to

change CPU affinity to meet the new allocation. Finally, the

resource state is updated for every server in a database

managed by the Resource Allocation Daemon service.

Th1s open access article Is distnbuted under a Creat1ve Commons Attnbut1on (CC-BY) license

http / /www.set.org.br/ijbe/ doi: l 0.18580/setijbe 2022.5 Web Link http / /dx.doi.org/10.18580/setiJbe.2022 5

58

59

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING - SET IJBE V.8, 2022, Article 5, Bp
2022 SET - Brazilian Society of Telev1s1on Eng1neering / ISSN (Print)· 2446-9246/ISSN (Online): 2446-9432

system running live. From a large set of varied sequences,

several subsets have been selected to perform our

experiments. Little variation in the results has been observed,

as long as the subsets are heterogeneous. ln a sense, the

behavior of the system is comparable to a statistical

multiplexer (statmux), as an allocation for a set of sequences

having all the sarne characteristics brings little to no gain. The

following example has been kept as a meaningful

representative of these experiments.

Four 1080p channels of 5 minutes duration, encoded using

an HEVC encoder, configured in constant quality mode and

targeting the sarne video quality. This mode delivers variable

bitrate (VBR) streams. Therefore, the performance at a given

quality is measured by the bitrate. The better the allocation,

the lower the bitrate. An arbitrary number of 28 CPU cores is

available to be shared between the 4 channels. These channels

have all different content complexity leveis.

Two allocation scenarios are run and compared. The first is

a uniform allocation, where every channel gets a fixed 7 CPU

cores no matter its content. The second is dynamic allocation;

in this mode, the orchestrator will compute the optimal

allocation periodically based on the content complexity.

1s�---------------�

e
o

16

14

.Q 12

8 10

50 100 150
Time{s)

- Movie-2
- Animation
- Movie-1
- Sports

- Average Allocation

200 250 300

Fig. 6: Dynamic allocation of 28 CPU cores among 4 channels

encodings.

Fig. 6 illustrates the changes of the allocation over time

for the four channels depending on their respective

complexities. As one may expect, the sports content is more

complex than the others, hence a larger allocation has been

granted to it almost all the time.

TABLE I: BDRATE GAINS COMPARED TO UNIFORM ALLOCATION.

Movie-1 Movie-2 Sports Animation Mean

BDRate 2.93% 2.63% -8.85% 1.23% -0.51 %

For the proposed combination of sequence and settings,

rate distortion curves are derived from which Bjimtegaard

Delta Rates (BDRates) [3] can be computed. Table I presents

the BDRate gains relative to the uniform allocation.

Negatives values indicate a gain (bitrate reduction), and

positives values a loss. The first observation is that resource

augmentation for one channel implies resource reduction for

at least one other channel, leading to BDRate lasses. Still,

with the proposed dynamic allocation, an overall BDRate

gain is achievable.

However, the BDRate is a relative performance metric

especially when comparing sequences with different content

types. The actual bitrates are provided in Table . The overall

performance is measured by the sum of the bitrates for the 4

channels, with a lower total bitrate indicating better

performance.

TABLE II: BITRATES 1N MBPS FOR ALL RUNS AT THE SAME QUALITY.

Uniform Dyoamic Gaio

Movie-1 0.686 0.709 3.35%

Movie-2 0.245 0.250 2.04%

Sports 4.015 3.469 -13.6%

Aoimatioo 0.195 0.198 1.54%

Total 5.141 4.626 -10%

Compared to uniform allocation, dynamic allocation

reduces the bitrate by 10%. For the highest bitrate sequence,

Sports, the required bitrate is reduced by 13.6% thanks to

dynamic allocation, which represents more than 0.5 Mbps on

a very demanding content. The absolute bitrate increase on

the other channels is comparatively negligible. Gaining more

than 0.5 Mbps on a channel is an opportunity to reach more

users with the full resolution quality. For the content provider,

it also translates into cost control. With uniform allocation,

more CPU cores would be necessary to reach the sarne bitrate

as the proposed solution, hence a higher cost. ln a summary,

this experiment showed 10% overall bitrate gain in dynamic

allocation mode while using the sarne CPU budget and

achieving the sarne video quality.

2) CPU Usage Optimization
ln the previous experiment the goal was to allocate the

available CPU cores in order to reduce the required bitrate at

a given video quality. ln a case where the aim is to minimize

the encoding cost, i.e., to use less CPU cores (e.g., when using

public cloud) or increase the channels density (have more

channels in the sarne server), dynamic allocation allows

reducing the total CPU cores required for a set of channels

compared to the uniform allocation mode while achieving the

sarne bitrate for the sarne video quality.

TABLE III: BITRATES (MBPS) FOR UNIFORM AND DYNAMIC ALLOCATION
WITH DIFFERENT CPU BUDGET.

Movie-1

Movie-2

Sports

Aoimatioo

Total

Uoiform 44 Dyoamic 28 Gaio

CPU Cores CPU Cores

0.679 0.709

0.246 0.250

3.546 3.469

0.2 0.198

4.671 4.626

4.42%

1.63%

-2.17%

-1%

-0.96%

The experiment setup is the sarne as the previous one, four

live HD channels are encoded with an HEVC encoder in

constant quality mode. For the uniform allocation, 44 CPU

cores are allocated to the channels (11 cores for each). The

Table III shows the bitrates achieved for a given video quality

in the uniform and dynamic CPU allocation modes. For the

dynamic allocation, a total budget of 28 CPU cores is

allocated which is 36% less than the 40 CPU cores of the

uniform allocation. Y et, a gain of 0,96% of required bitrate is

achieved compared to the uniform allocation mode. ln

Th1s open access article 1s distnbuted under a Creat1ve Commons Attnbut1on (CC-BY) license
http / /www.set.org.br/ijbe/ doi: l 0.18580/setijbe 2022.5 Web Link http / /dx.doi.org/10.18580/setiJbe.2022 5

60

61

62

63

64

Received in 2022-07-08 I Approved in 2022-08-17

