
Neural Network-Like LDPC Decoder for Mobile 

Applications 

CITE THIS ARTICLE 

Fadi Jerji 

Leandro Silva 

Cristiano Akamine 

Jerji, Fadi; Silva, Leandro; Akamine, Cristiano; 2022. Neural Network-Like LDPC Decoder for Mobile Applications. SET INTERNATIONAL JOURNAL OF 
BROADCAST ENGINEERING. ISSN Print: 2446-9246 ISSN Online: 2446-9432. doi: 10.18580/setijbe.2022.1. Web Link: http://dx.doi.org/10.18580/seti
jbe.2022.1 

[P G) �COPYRIGHT This work is made available under the (reative Commons - 4.0 lnternational License. Reproduction in whole or in part
111:P�-l!l-ill!!!!!!!!-is permitted provided the source is acknowledged. 

9



Neural Network-Like LDPC Decoder for Mobile 

Applications 

Fadi Jerji E), Leandro Silva E), and Cristiano Akamine E), Member, SET 

Abstract-This paper presents a low complexity iterative de
coder for Low-Density Parity-Check (LDPC) codes for mobile 
applications using a Neural Network-like (NNL) structure and a 
modified Single-Layer Perceptron (SLP) training algorithm. The 
proposed approach allows for midrange decoding performance 
with a minimum gap to Shannon-limit of 3.19 dB at a frame 
error rate of 10-4 for the short frame and the code rate 13/15 
of the next-generation Digital Terrestrial Television Broadcasting 
(DTTB) standard of the Advanced Television Systems Committee 
(ATSC), the "ATSC 3.0". The NNL decoder has a low decoding 
time, thus, it would be suitable for low power embedded systems, 
software-defined radio implementation tools, and software-based 
DTTB receptors. 

Index Terms-Channel coding, iterative decoding, Low-Density 
Parity-Check (LDPC) codes, Neural Networks. 

1. INTRODUCTION

S
INCE the introduction of mobile phones in the 70s, 

they have become increasingly essential in our everyday 

lives, and with the introduction of the smartphone in the late 

2000s, it started to replace many <levices by combining their 

functionalities in one high-performance piece of hardware [1]. 

One of the main challenges of our modem smartphones 

design process is achieving a trade-off between the demand 

for higher processing power and multi-functionality and the 

cost, weight, power consumption and battery lifespan [2]. This 

only serves to increase the necessity for hardware and software 

optimization. 

Most modem smartphones incorporate a variety of technolo

gies to serve different purposes, such as the Wi-Fi, the Long 

Term Evolution (LTE) from the Third Generation Partnership 

Project (3GPP) and the under-development fifth-generation 

wireless technology for digital cellular networks (SG). While 

those technologies are vastly different in many aspects, they all 

share an important component, the Forward Error Correction 

Code (FEC) that is deployed using the Low-Density Parity

Check (LDPC) codes [3]-[5]. 

Another example of a technology that uses LDPC codes 

and is soon-to-be incorporated in smartphones is the Digital 

Terrestrial Television Broadcasting (DTTB) receivers, specif

ically the next-generation DTTB standard of the Advanced 

Television Systems Committee (ATSC), the "ATSC 3.0" [6]. 

The LDPC codes are chosen in many technologies due to 

their near-Shannon-limit performance but their high complex-
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Toe authors are with the Postgraduate Program in Electrical and Com
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ity decoders force their implementation in a specialized chipset 

[7]. 
Considering that each of those technologies has different re

quirements for their error correction performance and latency, 

severa! dedicated LDPC decoding chipsets have to be included 

in the smartphone, which increases energy requirements and 

price. 

The remaining sections of this paper are organized as 

follows: the LDPC codes and the classical LDPC decoding 

methods in Section II, an overview of the perceptron, the 

Single-Layer Perceptron (SLP) and its training algorithms in 

Section III, the proposed Neural Networks-like (NNL) LDPC 

decoding method in Section IV, the mathematical complexity 

analysis and memory requirements of each of these decoders 

in Section V, the detailed results and discussions of the im

plemented experiments and numerical complexity calculation 

for each decoder in Section VI, and the conclusion in Section 

VIL 

II. LDPC CODES

The LDPC error correction codes were introduced by Gal

lager in [8]. They are an attractive option for many tech

nologies due to their near-Shannon-limit performance [7], but 

the LDPC code decoders are known for requiring a high 

processing power. Therefore, implementing these codes in 

software for smartphones requires highly optimized decoding 

algorithms, especially for the long codewords required for 

high-performance LDPC codes [9]. 

The LDPC code is represented by the notion (N,K), where 

N is the sum of the original information bits number K and 

the parity bits number P. The parity bits part P = N - K is 

calculated and added to the original information bits, therefore 

generating a message that can be transmitted via a noisy 

channel. 

An example LDPC code (7,4) defined by the matrix H is 

shown in (1) where the number of columns represents the total 

number of information bits and parity bits while the number 

of rows represent the number of parity bits. 

The parity check matrix H can be represented by a Tanner 

graph representation and shown in Fig. 1 [10], where the 

variable nodes Vi, V2 , • • •  , Vi are the values representing the 

message bits after passing through a noisy channel and the 

parity-check nodes C1, C2, C3 are the calculated parity values 

used in error check and correction. 
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Fig. 1: Tanner Graph. 

Many LDPC decoding methods were presented in the litera
ture and generally, they can be divided into two families, high
complexity high-performance decoders and low-complexity 
low-performance decoders. 

A. High-complexity high-peiformance decoders

Toe high-complexity high-performance family contains the
sum-product algorithm (SPA), its simplified version the min
sum algorithm (MSA) and their variant decoding algorithms, 
the normalized min-sum algorithm (NMSA), the offset min
sum algorithm (OMSA) and the variable correction algorithm 
(VCMS) [11]-[15]. 

While the aforementioned decoding methods vary in perfor
mance and distance from Shannon-limit, they all share a high 
complexity [16]. This high complexity, when combined with 
a long codeword, makes a software implementation of any of 
them impractical, since the latency caused by the decoding 
process would cause a reception disturbance and make it 
unfeasible [17]. 

B. Low-complexity Low-peiformance decoders

ln order to provide LDPC decoding methods with lower
decoding complexity, several algorithms were introduced in 
the literature, such as the bit-flipping algorithm (BFA) and its 
variant the weighted bit-flipping algorithm (WBF) [8], [18], 
but their low performance makes them unattractive methods 
for industrial implementations. 

1) Bit-Flipping decoding algorithm: The BFA algorithm
proposed by Gallager [8] is the simplest LDPC decoder as 
it uses binary information and it does not require extensive 
calculation. It starts by applying (2) to calculate the parity
check nodes binary values Cj1 from the binary values of the 
variable node V;1 , where i is the index of the variable node 
within the array of the variable nodes based on the matrix 
H that defines the LDPC code and j is the index of the 
check node within the array of the check nodes. Then for 
each variable node, the decoder counts the number of the 
unsatisfied parity-check nodes that are connected to it as in 
(3). Finally, the decoder flips the value of the variable node if 
that number was higher than a certain value X as in (4). The 
process is repeated until all parity-check nodes are satisfied or 
a maximum number of iterations is reached [8]. 

cj1 = xoRiEC(j) ¼1 

FlipV; = L Cj1 
jEV(i) 

(2) 

(3) 

if FlipV; < X 

if FlipV; � X (4) 

Although this method can be easily implemented in soft
ware, its low error correction performance makes it an 
unattractive industrial solution in many cases [8]. 

2) Weighted Bit-Flipping decoding Algorithm: The WBF is
an altemative LDPC decoding algorithm derived from the BFA 
by [18]. The decoding process starts by calculating the values 
of the parity-check nodes as it is done in BFA to detect any 
errors and terminating the decoding process if all the parity
check points were satisfied. 

Otherwise, the input log likelihood ratio (LLR) the LLRi 

are used to initialize the real value representation of each 
variable nodes V;r . Then, (5) is applied to find IV;Jminj that 
represents the lowest absolute real value among the variable 
nodes V; that are connected to the parity-check nodes Cj . 
The logical representation of the parity-check nodes Cj1 is 
calculated using (6) where V;1 is the logical representation of 
the variable nodes V;, i and j are the indexes of the variable 
nodes and the check nodes respectively. 

Toe real value Eir can be calculated using (7) then the 
flipping location can be determined by finding the highest Eir 

and flipping the logical value V;1 that correspond to it using 
(8). 

Toe operation is repeated until all the parity-check nodes 
are satisfied or the maximum number of iteration is reached. 

IV; lmin
1
· = min IV; 1 

r iEC(j) r 

Eir = L (2Cj1 - l)IV;Jminj 

jEV(i) 

if Ei = max Ei 
r i=l:N r 

otherwise 

(5) 

(6) 

(7) 

(8) 

Toe WBF can perform better than the BFA in some cases, 
but its limitation of flipping only one bit per iteration limits 
its practical implementations. 

III. THE SINGLE-LAYER PERCEPTRON NEURAL NETWORKS

Toe perceptron was originally proposed by [19] and [20] 
as a mathematical representation of the human brain neuron 
and its synapses. It was developed to be able to leam the 
relation between its inputs x1, x2, ... , Xn and its output y. 
According to Fig. 2, the perceptron has a bias of a fixed value 
of + 1 that has a connection weight Wb. Also, each input has its 
own weight w1, w2, ... , Wn, The weights are initialized with 
random values at the beginning of the training and can be 
adjusted by the training algorithm. 

Combining several perceptrons, an SLP Neural Network 
(NN) can be formed as shown in Fig. 3. To train the SLP, 
first, the network weights are randomized to break symmetry, 
then the training algorithm is applied as a two-step algorithm, 
the forward step to calculate the outputs and the second step to 
adjust the weights of the network to minimize the total error. 
For the forward step, the individual perceptron in the SLP uses 
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Fig. 2: The perceptron Adaline. 

Yl Ym 

+1

Fig. 3: Single-layer perceptron Neural Network. 

a sum operation to produce its output as in (9), where Xi and 
yo1 are the input of the índex i and the calculated output of 
the índex j respectively.

n 

Yºj = 1 c2:, XiWji + wbj) 
i=l 

(9) 

Toe total error E is calculated using (10) where yo1 and 
yd1 are the calculated output and the desired output of the 
perceptron of the índex j respectively [21].

(10) 

Then, the adjustment to the weight Wji, �Wji, is calculated 
by the mean of the partial derivative of the total error with 
respect to the weight w1 i using (11)

âE 
�Wji = --

ÔWji 
(11) 

The final stage of the training iteration (t), is to calculate 
the weights for the next iteration w1i(t + 1) applying the 
adjustment from the current iteration �Wji(t) to the weights 
w1i(t) using the training rate 'T/ as in (12). 

(12) 

The process is repeated until an acceptable total error or a 
maximum number of iterations is reached. 

Fig. 4: The proposed XOR perceptron. 

IV. THE PROPOSED NEURAL NETWORK-LIKE ALGORITHM

To provide an altemative to dedicated LDPC decoding 
chipsets, a configurable software implementation of the LDPC 
decoder for the smartphone can be used. By allowing some 
degradation in error correction performance, it becomes prac
tical to create a flexible, cost-effective LDPC decoder with low 
power consumption. 

Comparing the Tanner graph of Fig. 1 with the SLP structure 
in Fig. 3; the similarity can be easily spotted along with 
the possibility of applying the SLP NN training algorithm to 
decode the LDPC codes, although some modifications to the 
SLP and the training algorithm are required to fully match the 
Tanner graph. 

An early attempt to implement a Multi-layer perceptron 
(MLP) decoder was done by [22] and revised by the sarne 
authors in [23] and while it provided a proof of concept, it 
was not able to deliver a stable and functional decoder for 
long code words due to several limitations such as the high 
number of multiplications and the overflow of memory register 
that resulted from it. 

To modify the SLP structure of Fig. 3 to match the Tanner 
graph of Fig. 1, the bias weights should be omitted along 
with the activation function of each perceptron, in addition 
to omitting all the connections that correspond to ZERO 
in the matrix H and the Tanner graph. ln addition to the
modifications to the SLP structure, the training algorithm 
needs to be modified to adjust the inputs themselves instead 
of the weights of their connections. 

The perceptron structure is not adequate for the LDPC 
decoder requirements since the relation between the Tanner 
graph inputs V and the outputs C is a logical XOR. The 
SLP training algorithm requires the derivation of the function 
XOR, which means that it should have Real numerical values 
as inputs and outputs instead of the Boolean XOR. 

To solve the aforementioned issues, a new XOR perceptron 
is proposed as shown in Fig. 4. 

Let real variables V Ar , Br E lR, we define their logical 
representation A1, B1 as the following: 

{
ONE ifAr <O 

Az = LOGICAL(Ar) = ZERO ifAr >O
(13) 

Based on (13), the sign of Ar, sgn(Ar), combined with its 
absolute value represent its probability. Thus, Ar = O is an 
equal probability of A1 being a logical ZERO and a logical 
ONE at the sarne time and in this case a small random value 
is forced. Therefore, we define: 

NOT(Az) = LOGICAL(-Ar) 
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and 
Az XOR Bz = LOGICAL(Ar x Br) (14) 

As per the Tanner graph representation of the LDPC code, 
each check node C1 that is connected to the variable nodes 
V1, Vi, ... , Vn has a real value C1r and a logical representation 
C11 and each variable node has a real value ½r and a logical 
representation ½

1
• The value of C11 is calculated as in (15). 

c]l 
= V11 XOR Vil XOR ... XOR Vnl (15) 

From (14) and (15) 

n 

ln order to avoid a variable overflow due to the limitation of 
real numbers microprocessors representation such as float and 
double float we calculate C1r as shown by Fig. 4 and (16): 

n 

c]r = II Tanh(½J

As for V Vir E � then 
i=l 

-1 < Tanh(½J < 1 

and 
n 

-1 < II Tanh(½r ) < 1 
i=l 

(16) 

thus, the aforementioned limitation for the algorithm imple
mentation is removed. 
For the LDPC code (N,K), (16) becomes (17) 

c]r = II Tanh(½r )
iEG(j) 

(17) 

By modifying the SLP training algorithm for the new XOR 
perceptron-Tanner graph structure, we obtain (18), 

(18) 

where E is the total error and e1 is the error for the check 
node C1 and is calculated using (19), 

(19) 

where Z is the desired output value and is a positive real 
number in the range ( O.O - 1.0) representing a logical ZERO, 
Then the partia! derivative of the total error with respect to 
each variable node is calculated using (20), 

where 

oE�v; =--ir o½r 

= 
- " ( oE 

X 

Oej 
X 

ac]r )L..,, oe . ac. av; 
jEV(i) J Jr ir 

oE --e
oe · - J

J 

(20) 

and 

and 

oe1 = _ 1ac-Jr 

ac]r = [ II Tanh(½,
r
)][Tanh'(½r )lav; ir i'EG(j)\i 

Toe last step of the iteration would be the application of 
the correction to ½ using (21) 

(21) 

where t, ½) t) and � ½) t) are the current iteration, the 
value of ½r during the current iteration and the calculated 
value of � ½r in the current iteration respectively and where 
t + 1 and Vir ( t + 1) are the next iteration and the value 
of Vir during the next iteration respectively and rJ is a real 
number that represents the correction rate. This experimental 
study demonstrated that the proposed decoder has its best 
performance when 'T/ satisfied the condition O < 'T/ < 2. 

lt is important to mention that to keep the Tanh functions 
in ( 16) functioning in the linear area of the Tanh curve, the 
input variables ½r need to be normalized to match that area. 
Since the data is normalized, the NNL decoder is not sensitive 
to channel estimation error. 

V. COMPLEXITY ANALYSIS AND MEMORY REQUIREMENTS

To compare the complexity of the proposed NNL decoder
with the low-complexity decoders, the BFA and the WBF, we 
calculate the number of microprocessor cycles needed for each 
step of each decoder and its memory footprint. 

A. Complexity analysis

Let Ia, Im, Ic, Ix , In, It, Is and Iabs be the number
of microprocessor cycles needed for addition, multiplication, 
comparison, logical XOR operation, logical NOT operation, 
hyperbolic tangent, signal extraction operation and absolute, 
respectively, nI be the total number of microprocessor cycles 
needed for the current step of the decoding iteration. 

For the LDPC code (N ,K) where O is the number of nonzero 
elements of the sparse matrix H of N colurnns and P rows, 
the value of O is equal to the total number of connections 
in the corresponding Tanner graph. The value Nerrors is the 
number of erroneous bits, 

For the sarne LDPC code (N,K), n ½ and nC1 are the 
number of the check nodes connected to the variable node 
½ and the number of variable nodes connected to the check 
node C j respectively. 

1) BFA complexity: To calculate the complexity of BFA, we
start by calculating the complexity of (2) that is represented 
by (22). 

p 

nI= LnC1 X Ix 

j=l 

= O X Ix 

Toe complexity of (3) is represented by (23). 

(22) 
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N 

nI= Ln¼ X Ia 
i=l 

= O X Ia 

The complexity of (4) is represented by (24). 

N 

nI = L Ic + Nerrors X In 
i=l 

= N X Ic + Nerrors X In 

as O � Nerrors � N then 

(23) 

(24) 

2) WBF complexity: To calculate the complexity of WBF,
it is necessary to calculate the complexity of each step of its 
iteration. The complexity of (5) is represented by (25). 

p 

nI= LnCj X (Ic+Iabs) 
j=l 

= O X (Ic + Iabs) 

The complexity of (6) is represented by (26). 

p 

nI= 2:ncj X Ix 

j=l 

= O X Ix 

The complexity of (7) is represented by (27). 

N 

nI = Ln¼ X (2 X Im + Ia) 
i=l 

The complexity of (8) is represented by (28). 

nI = N X Ix +In 

(25) 

(26) 

(27) 

(28) 

3) NNL complexity: The complexity of the proposed NNL
decoder is provided by the sum of the complexity of all its 
steps, starting with the calculation of the complexity of (17) 
that is represented by (29). 

p 

nI = L[nCj x (Im + It)] 
j=l 

Ignoring the repetitive calculations of Tanh(¼J 
p 

= Im X L nCj + N X It 
j=l 

= O X Im +N X It 

The complexity of (18) is represented by (30). 

The complexity of (20) is represented by (31). 

(29) 

(30) 

N 

nI = L{Ia + L [Ia+ (nCj -1) X (Im +It) 
i=l jEV(i) 

+ 2 X Ia + 3 X Im + It]} 
=(N + 3 X O) X Ia+ O X (3 X Im + It) 

p 

+ (Im + It)(-O + L nCJ)
j=l 

(31) 

However, since Tanh(¼J was pre-computed in (16), (31) 
becomes (32): 

p 

= (N + 3 X O) X Ia+ Im X (2 X O+ L nCJ) (32) 
j=l 

The complexity of (21) is represented by (33) 

(33) 

B. Memory requirements

As all methods require storing both V and C matrices that
have the sizes N x 1 and P x 1 respectively, then we analyze 
the memory space that is required by each method in addition 
to the basic N + P locations. We ignore single variables as 
they require a negligible memory space in comparison to the 
matrices used in the decoding methods. 

To calculate the number of memory accesses per iteration 
for each decoding method, it is necessary to calculate the 
number of memory accesses for each step represented by nM a 
where Ma is the memory access per variable. 

1) BFA memory requirements: The BFA requires storing
the matrix Flip¼ with the size N x 1. Thus, the total memory 
requirement is: 2 x N + P. 

The memory access of (2) is represented by (34). 
p p 

nMa = 2:Ma+ 2:ncj X Ma 
j=l j=l 

= (P+O) x Ma 

The memory access of (3) is represented by (35). 
N N 

nMa= LMa+ Ln¼ x Ma 
i=l i=l 

= (N + O) x Ma 

The memory access of (4) is represented by (36). 
N 

nMa= L2 xMa 
j=l 

= 2 x N x Ma 

(34) 

(35) 

(36) 

2) WBF memory requirements: The WBF requires storing
the matrices l¼r lminj and cj1 

with the size p X 1 each. Thus, 
the total memory requirement is: N + 3 x P.

The memory access of (5) is represented by (37). 
p p 

nM a= L Ma+ L nCj x Ma 
j=l j=l 

= (P+O) x Ma 

(37) 
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Toe memory access of (6) is represented by (38). 

p p 

nMa = LMa+ LnC1 x 2 x Ma 
j=l j=l 

= (P + 2 x O) x Ma 

Toe memory access of (7) is represented by (39). 

N N 

nMa= LMa+ Ln¼ x (2 x Ma) 
i=l i=l 

= (N + 2 x O) x Ma 

Toe memory access of (8) is represented by ( 40). 

nMa=NxMa 

(38) 

(39) 

(40) 

3) NNL memory requirements: The NNL method requires
storing the matrix Tanh(¼J with the size N x 1, and the
storage of the matrix � ¼

r 
can be omitted since only the 

current � ¼
r 

is needed, and it does not need to be stored 
between iterations. Thus, the total memory requirement is: 
2 x N +P. 

Toe memory access of (17) is represented by (41). 

p p 

nMa = LMa+ L[nC1 x Ma] 
j=l j=l 

= (P+O) x Ma 

Toe memory access of (18) is represented by (42). 

p 

nMa= LMa+l 
j=l 

=Px (Ma+l) 

Toe memory access of (20) is represented by (43). 

N N 

nM a = L Ma+ L L (nC1 + 1) x Ma 
i=l i=l jEV(i) 

p 

(41) 

(42) 

= N x Ma+O x Ma+Ma x LnCJ (43) 

p 

= (N +o+ LnC;) X Ma 
j=l 

j=l 

Toe memory access of (21) is represented by (44) 

N N 

nMa = LMa+ L(2 x Ma) 
i=l i=l 

= 3 x N x Ma 

VI. EXPERIMENTAL RESULTS AND DISCUSSIONS 

(44) 

To numerically compare the proposed NNL decoder with 
the classical LDPC decoders, both a performance simulation 
and a complexity calculation are necessary. 

A group of LDPC codes was selected for comparative 
analysis. ln this paper, a case study was done using the ATSC 
3.0 LDPC codes. 

A. Case study: ATSC 3.0 LDPC Codes
Toe ATSC 3.0 has been under development as the next

generation DTTB standard by the ATSC since early 2013 
[24], [25]. The ATSC 3.0 offers higher data rates, allowing 
higher image quality and higher robustness in comparison to 
the earlier ATSC 1.0 A/53 standard that was developed over 
a decade earlier [26]. 

ln order for the new ATSC 3.0 standard to ensure higher 
robustness than its predecessors, severa! new techniques 
were adopted, such as the Bit-interleaved Coded Modulation 
(BICM) [27]. The BICM deploys two concatenated FEC layers 
with an inner LDPC code and an outer Bose-Chaudhuri
Hocquenghem (BCH) code [28]. The outer code can be 
replaced with a Cyclic Redundancy Check (CRC) or it can 
be omitted. 

Toe ATSC 3.0 standard uses a systematic LDPC coding 
with two different values for its frame size N, a normal frame
of 64800 bits and a short frame of 16200 bits, given that the 
normal frame provides a better error correction performance 
and the short frame a lower latency for latency-sensitive 
applications [29]. Ten different Code Rates (CR) from (2/15) 
up to (13/15) for each frame size cause a variance in the length 
of information part K of the LDPC message.

ln order for the new ATSC 3.0 standard to achieve high ro
bustness, two different LDPC structures are used, the irregular 
repeat accumulate (IRA) structure that has a high performance 
in medium and high CR but with the disadvantage of low 
performance in low CR [25], [30]. Therefore, the multi-edge 
type (MET) structure is used for low CR [6]. 

B. Pe,formance simulation
To provide a comparative analysis, the proposed NNL

was implemented and tested over an additive white Gaussian 
noise (A WGN) channel using quadrature phase-shift keying 
(QPSK) modulation [31]. Each message was decoded using a 
maximum of 50 iterations. An extensive computer simulation 
was executed to obtain the signal to noise ratio per symbol 
(E8 /N0) that corresponded to the threshold of 10-4 frame
error rate (FER) since it is always assumed that the outer 
coding is set to BCH. A performance of 10-4 FER by the 
LDPC inner code will guarantee an overall performance of 
10-5 FER after applying the outer code, which is sufficient 
for terrestrial broadcasting services [ 16]. 

Toe value rJ was chosen to be equal to 1.0 for all code 
lengths and CR. For code length of 64800 and CR of (2/15 
- 6/15), the normalization range and the value Z were chosen
to be equal to (-2.0 - 2.0) and 0.60 respectively, and for the
CR of (7/15 - 13/15) the respective equal values chosen were
(-4.0 - 4.0) and 0.99. For code length of 16200 and CR of
(2/15 - 4/15) and (6/15 - 8/15) the normalization range and
the value Z were chosen to be equals to (-2.0 - 2.0) and 0.60
respectively, and for the CR of (5/15 and 9/15 - 13/15) the
respective equal values chosen were (-4.0 - 4.0) and 0.99.

Fig. 5 demonstrates the performance of various ATSC 3.0 
LDPC decoders with a code length of 16200 and CR of 13/15. 
ln this case, the simulation was run until the total number of 
frames are processed regardless of the FER value, therefore 
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Fig. 5: ATSC 3.0 LDPC codes performance using various 
decoders (code length = 16200, CR = 13/15). 

TABLE I: Performance comparison for ATSC 3.0 LDPC 
decoders (code length = 64800) (QPSK) 

CR 

2/15 
3/15 
4/15 
5/15 
6/15 
7/15 
8/15 
9/15 
10/15 
11/15 
12/15 
13/15 

Structure 

MET 
MET 
MET 
MET 
IRA 
MET 
IRA 
IRA 
IRA 
IRA 
IRA 
IRA 

Shannon lirnit 
(Es/No ,dB) 

-6.92 
-4.94
-3.47 
-2.26 
-1.21 
-0.26 
0.62 
1.47 
2.31 
3.17 
4.08 
5.13 

Required Es/Na for FER=l0-4 (dB) 
NNL 
3.81 
4.90 
6.02 
6.70 
7.01 
8.09 
7.95 
8.15 
8.11 
8.14 
8.27 
8.51 

WBF [32] 
10.32 
10.32 
10.34 
10.36 
10.50 
10.40 
10.47 
10.44 
10.49 
10.50 
11.00 
10.91 

BFA [32] 
6.80 
7.90 
8.41 
9.31 
10.11 
10.30 
10.40 
10.37 
10.50 
10.74 
11.56 
12.00 

TABLE II: Performance comparison for ATSC 3.0 LDPC 
decoders (code length = 16200) (QPSK) 

Shannon lirnit Required Es/Na for FER=l0-4 (dB) 
CR Structure (Es/Na ,dB) NNL WBF [32] BFA [32] 
2/15 MET -6.92 4.04 9.21 8.70 
3/15 MET -4.94 4.90 9.13 8.16 
4/15 MET -3.47 6.32 9.20 9.03 
5/15 MET -2.26 6.50 9.17 9.10 
6/15 IRA -1.21 6.42 9.50 9.91 
7/15 IRA -0.26 7.00 10.00 9.70 
8/15 IRA 0.62 6.94 10.00 10.00 
9/15 IRA 1.47 7.31 9.71 10.02 
10/15 IRA 2.31 7.37 10.00 10.30 
11/15 IRA 3.17 7.60 10.20 10.52 
12/15 IRA 4.08 7.90 10.23 10.93 
13/15 IRA 5.13 8.32 10.52 11.90 

it can be verified that the proposed NNL decoder does not 
present an error floor. 

Toe experimental results for each coding rate are presented 
in Tables I and II where the NNL superior performance to 
both the WBF and the BFA decoding algorithm can be seen 
in all code rates and code lengths. 

It can be seen that the limitation of the WBF of only 
correcting one error per iteration is clear in the results as the 
WBF decoder does not have a decoding performance that can 

achieve BER of 10-4 for a value of E8 /N0 < 9.13 dB for 
any of the code rates. 

Toe BFA decoding algorithrn limitation due to its depen
dency on binary LLRi values is shown in the results as well, 
especially at high code rates. 

Toe proposed NNL decoding algorithm demonstrated a mid
range decoding performance getting closer to the theoretical 
limit in higher code rates . 

C, Complexity calculation 

As the hyperbolic tangent function requires one exponential 
function to be calculated in approximately 60 microprocessor 
clock cycles, while the inverse hyperbolic tangent function 
requires one logarithmic function thus approximately 52 pro
cessor clock cycles; most decoders use a work-around for this 
issue by tabling the hyperbolic tangent function to reduce the 
required cycles [33]. Most modem microprocessors utilize a 
hardware float point unit (FPU) that is capable of executing 
addition and multiplication in one to two cycles in addition 
to the logical and comparison functions in a single cycle 
[34]. Therefore, we can approximately calculate the number 
of cycles required to decode an ATSC 3.0 LDPC message of 
different CR using different decoders. 

Considering that all the mathematical and logical operations 
mentioned in Section V would be executed in one processor's 
cycle except for the multiplication Im that needs two cycles 
and the hyperbolic tangent It that requires 60 cycles, it 
is possible to calculate the number of cycles per iteration 
for each decoder by applying the aforementioned values in 
the complexity equations demonstrated in Section V. Toe 
implementation overhead caused by the various loops required 
to execute each step of the decoding process is estimated by 
counting the required operations and the number of memory 
accesses. 

TABLE III: ATSC 3.0 LDPC decoders number of 
instructions and memory accesses ( code length = 64800) 

CR 
NNL (x106) WBF (x106) BFA (x106) 
nl nMa nl nMa nI nMa 

2/15 5.62 2.37 2.10 1.51 0.61 0.76 
3/15 6.99 3.01 2.22 1.58 0.64 0.79 
4/15 8.58 3.79 2.30 1.62 0.66 0.80 
5/15 11.91 5.41 2.41 1.68 0.68 0.83 
6/15 7.04 3.01 2.32 1.61 0.66 0.80 
7/15 22.03 10.43 2.55 1.75 0.72 0.85 
8/15 8.34 3.65 2.35 1.62 0.67 0.79 
9/15 9.18 4.07 2.34 1.61 0.67 0.79 
10/15 10.18 4.58 2.31 1.58 0.66 0.78 
11/15 11.85 5.42 2.30 1.56 0.66 0.77 
12/15 15.35 7.16 2.34 1.58 0.67 0.78 
13/15 20.93 9.96 2.30 1.55 0.66 0.76 

It can be noted that as the complexity of BFA changes based 
on the number of the erroneous bit, as demonstrated in (24), 
the presented BFA complexity calculation is done with the 
assumption that half of the received bits are erroneous and 
thus provides an average decoding time. 

Tables III and IV demonstrate the complexity values cal
culated using the method described in Section V represented 
by the total number of instructions and the total number of 
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TABLE IV: ATSC 3.0 LDPC decoders number of 
instructions and memory accesses (code length = 16200) 

CR 
NNL (x106) WBF (x106) BFA (x106) 
nI nMa nI nMa nl nMa 

2/15 0.83 0.35 0.38 0.29 0.12 0.15 

3/15 1.32 0.56 0.50 0.36 0.15 0.18 

4/15 1.45 0.63 0.50 0.36 0.14 0.18 

5/15 2.11 0.93 0.57 0.40 0.16 0.20 

6/15 1.81 0.77 0.59 0.41 0.17 0.20 

7/15 1.98 0.86 0.60 0.41 0.17 0.20 

8/15 2.27 1.00 0.62 0.42 0.17 0.21 

9/15 2.13 0.94 0.56 0.38 0.16 0.19 

10/15 2.86 1.29 0.62 0.42 0.17 0.20 

11/15 2.76 1.26 0.55 0.38 0.16 0.19 

12/15 3.72 1.73 0.57 0.39 0.16 0.19 

13/15 5.47 2.60 0.59 0.39 0.17 0.19 

memory accesses required in a single decoding iteration of 
the BFA, WBF and the proposed NNL decoding algorithms 
for the ATSC 3.0 codes. 

By analyzing the values in Tables III and IV, one can 
assume that the NNL decoder decoding time would be higher 
than the WBF decoding time, but this assumption would not be 
accurate even when considering the additional implementation 
overhead [17]. Such an assumption would be discarding two 
important factors, the first is the cache memory available in 
all practical processors that, combined with the small memory 
footprint of the three decoders, eliminates the need for a high 
number of memory accesses by storing the C and V matrices 
of the size P and N respectively in the cache memory thus 
speeding up the over-all processing [35]. 

Toe second factor is that the instructions are not necessarily 
executed sequentially and that currently used processors de
ploy the superscalar pipelining that allows for the execution 
speedup by benefiting from the intrinsic parallelism of the 
algorithm, therefore executing multiple instructions at the 
sarne time, nevertheless, any dependency in the code can limit 
the superscalar, especially conditional operations [36]. 

Toe proposed NNL decoding algorithm was designed with 
superscalar in mind by eliminating of conditional operations 
to avoid any branch penalties and allow for a considerable 
performance enhancement while the WBF and the BFA still 
require a high number of conditional operations relative to the 
total number of operations, in both cases the benefit of the 
superscalar pipelining is limited. 

Toe result of both cache memory speedup and the super
scalar pipelining speedup is clear in the complexity of an 
implementation of the three decoding methods with a clear 
additional speedup in the case of the proposed NNL decoder. 

To calculate the decoding time for each of the decoders 
three states of the art mobile phones were selected, the iPhone 
Xs from Apple, the Galaxy S 10 from Samsung and the Pixel 
3XL from Google. Toe cycle time and memory access time 
is calculated based on the mobile phone specification and the 
values are used to calculate the decoding time for the decoders. 

Although the mobile phone companies don't usually an
nounce the specification of the processor and the memory 
used in their products, those specifications have been identified 
by tech enthusiasts. Toe iPhone XS deploys an A12 Bionic 

2.49 GHz processor and a 64-bit single-channel 2133 MHz 
LPDDR4X memory while the Samsung Galaxy SlO uses a 
Samsung Exynos 9820 2.7 GHz processor and a Samsung 
K3UH7H70AM-AGCL 2133 MHz memory. The Google Pixel 
3XL uses a Qualcomm Kryo 385 2.8 GHz processor and an 
MT53D512M64D4RQ-053_ WT_E LPDDR4 1866MHz mem
ory [37]-[39]. 

Toe values of the decoding throughput in kbps, for 50 
interactions and after removing the parity bits, for the LDPC 
decoders are shown in Tables V and VI. 

These results confirm the additional speedup that the pro
posed NNL decoding method gained from the superscalar 
pipelining in addition to the cache memory speedup that all 
three decoders gained. 

Toe results for decoders throughput in kbps, for 50 inter
actions and after removing the parity bits, on the Samsung 
Galaxy S 10 are shown in Fig. 6 and 7. ln addition, Fig 8 and 
9 demonstrate the decoders' throughput in kbps in relation 
to their decoding performance represented by the required 
E8 /N0 for FER=l0-4, these figures demonstrate that even 
in the cases where a low code-rate BFA decoder would have 
a better performance than a high code-rate NNL decoder, the 
NNL decoder would still provide higher throughput. 

Only when the Es /N0 is around 10 (dB), does the BFA 
start being more advantageous when the QPSK modulation is 
used, but in this case, the proposed NNL decoder might not 
require all 50 iterations to correct the channel-induced errors 
and its throughput would be higher as well. This would be a 
dynamic throughput value that would change according to the 
number of required decoding iterations. 

VII. CONCLUSION 

ln this paper, we proposed an NNL low complexity LDPC 
decoder derived from NN and SLP training algorithrn and 
supported with mathematical proof and computer simulation 
results. We demonstrated the difference in the computa
tional complexity and memory requirements for the proposed 
midrange NNL, BFA, WBF decoders. 

Toe experimental results showed that the proposed NNL 
outperformed both the BFA and the WBF algorithms in all 
of the tested code rates and code lengths of the ATSC 3.0 
LDPC. ln addition, the mathematical calculation along with 
the experimental results highlighted the speedup that the NNL 
decoder benefited from due to superscalar and cache memory. 

Toe proposed NNL decoder demonstrates a low complexity 
and a mid-range performance; since its error correction per
formance is superior to the BFA and WBF while having a 
memory requirement and a complexity that is lower than the 
WBF and, in some cases, the BFA decoder. These characters 
makes it a very suitable decoder for software implementations 
for mobile applications, low-cost DTTB receivers and embed
ded systems. 
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TABLE V: ATSC 3.0 LDPC decoders throughput in kbps TABLE VI: ATSC 3.0 LDPC decoders throughput in kbps 
( code length = 64800). (code length = 16200). 

CR Device NNL WBF BFA 
CR Device NNL WBF BFA 

iPhone XS 58.8 40.5 62.5 iPhone XS 114.0 114.0 183.4 
2/15 Galaxy SlO 63.4 43.7 67.2 2/15 Galaxy SlO 124.1 124.1 200.9 

Pixel 3XL 64.9 44.6 69.2 Pixel 3XL 125.3 123.8 200.0 
iPhone XS 75.3 48.8 74.9 iPhone XS 113.0 89.1 140.6 

3/15 Galaxy SlO 81.1 52.6 80.9 3/15 Galaxy SlO 121.7 95.9 150.7 
Pixel 3XL 83.3 54.0 83.0 Pixel 3XL 124.6 979 153.4 
iPhone XS 90.2 56.3 86.1 iPhone XS 143.0 106.8 165.4 

4/15 Galaxy SlO 97.5 60.8 93.2 4/15 Galaxy SlO 153.4 115.6 179.5 
Pixel 3XL 100.1 62.5 95.9 Pixel 3XL 157.2 117.9 183.6 
iPhone XS 91.3 53.3 81.1 iPhone XS 135.2 90.9 138.8 

5/15 Galaxy SlO 98.6 57.6 87.7 5/15 Galaxy SlO 146.5 97.7 150.7 
Pixel 3XL 101.4 59.3 90.5 Pixel 3XL 149.4 100.2 154.6 
iPhone XS 254.4 243.4 386.5 iPhone XS 253.1 243.4 383.5 

6/15 Galaxy SlO 273.6 261.0 415.0 6/15 Galaxy SlO 269.3 258.3 408.3 
Pixel 3XL 278.2 262.3 421.9 Pixel 3XL 275.4 260.6 417.2 
iPhone XS 97.0 53.1 80.4 iPhone XS 289.5 278.6 447.4 

7/15 Galaxy SlO 104.9 57.4 87.0 7/15 Galaxy SlO 314.2 301.3 476.3 
Pixel 3XL 108.0 59.2 89.9 Pixel 3XL 319.7 302.4 483.0 
iPhone XS 340.9 327.7 519.2 iPhone XS 330.9 318.4 511.4 

8/15 Galaxy SlO 366.8 351.6 557.9 8/15 Galaxy SlO 351.6 344.4 544.4 
Pixel 3XL 372.9 353.4 562.5 Pixel 3XL 361.4 345.1 540.9 
iPhone XS 391.4 379.7 597.9 iPhone XS 387.4 358.2 558.4 

9/15 Galaxy SlO 419.5 406.1 643.5 9/15 Galaxy SlO 412.7 379.7 593.3 
Pixel 3XL 426.6 410.5 654.6 Pixel 3XL 424.1 386.4 612.5 
iPhone XS 434.9 413.6 649.0 iPhone XS 413.6 398.0 639.2 

10/15 Galaxy SlO 466.2 441.8 697.3 10/15 Galaxy SlO 448.8 430.5 680.4 
Pixel 3XL 474.0 446.4 709.0 Pixel 3XL 455.3 432.7 687.3 
iPhone XS 483.4 461.8 725.1 iPhone XS 504.4 483.4 773.4 

11/15 Galaxy SlO 521.4 496.3 779.9 11/15 Galaxy SlO 539.6 515.6 828.7 
Pixel 3XL 530.4 501.7 793.3 Pixel 3XL 551.0 524.9 831.8 
iPhone XS 527.3 508.8 797.2 iPhone XS 538.6 516.6 791.0 

12/15 Galaxy SlO 568.8 544.4 858.1 12/15 Galaxy SlO 575.3 550.3 872.8 
Pixel 3XL 578.6 550.3 872.8 Pixel 3XL 584.2 554.7 876.5 
iPhone XS 580.4 556.8 870.5 iPhone XS 571.3 537.7 856.9 

13/15 Galaxy SlO 623.2 596.1 929.6 13/15 Galaxy SlO 623.2 583.4 914.1 
Pixel 3XL 634.0 602.7 945.6 Pixel 3XL 633.3 587.5 924.7 
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