
CITE THIS ARTICLE
Major, Oliver; Shaban, Ziad; Czelhan, Bernd and Murtaza, Adrian; 2021. Immersive Audio Application Coding Proposal to the SBTVD TV 3.0 Call for
Proposals. SET INTERNATIONAL JOURNAL OF BROADCAST ENGINEERING. ISSN Print: 2446-9246 ISSN Online: 2446-9432. doi:
10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

Immersive Audio
Application Coding Proposal to the
SBTVD TV 3.0 Call for Proposals

Oliver Major
Ziad Shaban

Bernd Czelhan
Adrian Murtaza

47

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 4, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

Abstract— In July 2020 the Brazilian Terrestrial Television
System Forum (SBTVD) has issued a Call for Proposals (CfP)
for their next-generation digital TV system called TV 3.0.
Fraunhofer IIS and ATEME have proposed the MPEG-H Audio
system, based on the open international standard ISO/IEC
23008-3, MPEG-H 3D Audio, as a candidate technology for the
Application Coding component of SBTVD TV 3.0. The
submitted proposal specifies a new Application Programming
Interface (API) enabling applications to make use of the next-
generation interactivity features of the MPEG-H Audio system.

This paper provides a detailed description of the proposed
API, as well as the submitted JavaScript implementation, and
the architecture of the prototype system. Additionally, the paper
outlines the proposed evaluation process demonstrating how the
MPEG-H Audio system fulfills the TV 3.0 Application Coding
requirements for 3D object-based immersive audio interaction
and emergency warning information delivery.

Index Terms— 3D and Immersive Audio, Accessibility,
Adaptation and customization of content, ATSC 3.0,
Application Coding, API, Broadcast, Broadband, Emergency
warning system, HTML 5, Hybrid Delivery, Immersive Sound,
MPEG-H Audio, Next Generation Audio, Object‐based
broadcasting, Personalized Sound, SBTVD TV 3.0, Streaming

I. INTRODUCTION

HE Brazilian Digital Terrestrial Television System
Forum (SBTVD) has issued in July 2020 a Call for

Proposals (CfP) seeking input for Brazil's next-generation
Digital TV system under the name “TV 3.0 Project” [1]. The
SBTVD Forum has established a detailed set of TV 3.0
requirements and use cases covering six system components
(Over-the-air Physical Layer, Transport Layer, Video
Coding, Audio Coding, Captions, and Application Coding).
The CfP was divided into two phases: Phase 1 required an
initial submission from proponents identifying the candidate
technology and providing basic information, while in Phase 2
the proponents were expected to submit a full specification of
the candidate technology as well as hardware and software
solutions for the feature evaluation.

In response to the SBTVD TV 3.0 Call for Proposals,
Fraunhofer IIS, ATEME, the Digital Broadcasting Experts
Group (DiBEG) and the Advanced Television Systems
Committee (ATSC) have jointly proposed the MPEG-H
Audio system, based on the open international standard
ISO/IEC 23008-3, MPEG-H 3D Audio [2], as the audio

component. Additionally, Fraunhofer IIS and ATEME have
submitted a proposal for the Application Coding component,
specifying a new Application Programming Interface (API)
fulfilling the requirements for 3D object-based immersive
audio interaction and emergency warning information
delivery using an interactive application.

MPEG-H Audio was already adopted in Brazil as part of
the TV 2.5 Project to enhance the audio experience over
ISDB-Tb with immersive and personalized sound and it is
currently fully specified in the ABNT standards [3][4][5][6].
This has enabled broadcasters and content creators in Brazil
to gain experience in advanced audio productions with
MPEG-H. Having professional broadcast equipment from
several major providers available has been essential for using
the system in the existing ISDB-T broadcast infrastructure
and consequently the MPEG-H Audio system can ensure a
smooth transition from TV 2.5 to TV 3.0.

The MPEG-H Audio system was developed to allow
highly efficient immersive audio transmission and new
capabilities such as advanced accessibility, interaction,
personalization and adaptation of audio to different usage
scenarios, delivering the best possible experience and taking
audio to the next level. A detailed technical description of the
MPEG-H Audio system is provided in [7] and lessons learned
during live broadcast of major events using MPEG-H Audio
are described in [8].

The use of audio objects, usually in combination with
channel-based audio, enables the viewers to interact with the
content in new ways and create a personalized listening
experience. The MPEG-H Audio metadata carries all the
information needed to allow viewers to change the properties
of audio objects by attenuating or increasing their level,
disabling them, or changing their position in three-
dimensional space. Additionally, the MPEG-H Audio
metadata structures empower broadcasters to enable or
disable interactivity options and to strictly set the limits to
which extent a user can interact with the content.

One of the most important use cases for personalization is
dialog enhancement. With MPEG-H Audio the dialog or
commentary for a program is sent as an audio object and
associated metadata. This allows the viewer at home to adjust
the relative volume or “presence” of the dialog relative to the
rest of the audio elements in the program. This simple case
can be extended to offer two or more dialog objects with
different languages or commentaries (e.g., biased

Immersive Audio
Application Coding Proposal to the
SBTVD TV 3.0 Call for Proposals

Oliver Major, Ziad Shaban, Bernd Czelhan, and Adrian Murtaza,
Fraunhofer Institute for Integrated Circuits (IIS)

T

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

48

commentators for each of the teams during a football game).
Moreover, the MPEG-H Audio metadata enables

broadcasters to provide several versions of the content, as
so-called “presets”, which describe how all channels and
object signals are mixed together and presented to the viewer.
Choosing between different presets is the simplest way to
interact with the content. Additionally, advanced interactivity
settings can be offered to more experienced users for
manipulating objects individually.

The MPEG-H Audio system standardizes a rich metadata
set that enables the most advanced and flexible end-user
interactivity and personalization experience, while still
offering full control over these features to the broadcasters.
The presence of metadata in the audio bitstream is extremely
important for enabling the Application Coding layer to offer
all these options to the user in a controlled and well-defined
way.

In order to allow application developers to make use of
these advanced audio features in broadcast applications, new
APIs for interacting and controlling the rendering of the
current audio scene are necessary. Therefore, new NCL
(audio) properties have been proposed in [10]. The current
document continues the work on new APIs for controlling
advanced audio features and will describe the MPEG-H
Audio System proposal for the Application Coding part of the
SBTVD TV 3.0 Call for Proposal [1].

As part of this submission, a new JavaScript [14] API for
controlling advanced audio features was defined. The
submission also contains a prototype receiver device and
prototype application, which practically show that the
proposal fulfills the Application Coding requirements of the
SBTVD TV 3.0 Call for Proposal [1].

In this paper, we present the API specification and explain
the design principles which have been used. Additionally, the
prototype implementation and the test results submitted for
evaluation in the TV 3.0 Project will be described. The
SBTVD TV 3.0 evaluation process of the proposal is
supported by the proposed API and prototype. Lastly, we
conclude the paper with a summary of the discussed topics
and an outlook to further work.

II. API DESCRIPTION

This section describes the proposed API for the
Application Coding part of the SBTVD TV 3.0 Call for

Proposal [1]. The proposal extends the Ginga-HTML5 [9]
environment by a JavaScript API that allows interaction with
the built-in MPEG-H Audio decoder. This allows application
developers programmatic control over the MPEG-H user
interactivity features.

The basis for the proposed API is an extension of the
HTMLMediaElement [21] with an ngaInteractivity attribute
of type NGAInteractivity. This serves as an entry point for
programmers to take advantage of next-generation audio
features on an HTMLMediaElement that is playing back an
MPEG-H audio stream. The structure of the NGAInteractivity
interface and its sub-interfaces is described in the following
overview:

- The NGAInteractivity interface contains a list of audio
presets, with exactly one preset active at a time.

- Each AudioPreset object is representing an audio
preset and contains a list of audio objects and a list of
audio switch groups. This implies that different audio
presets can have different audio objects and audio
switch groups associated with them. It also allows
each preset to maintain the state of its audio objects
and audio switch groups.

- The state of each AudioObject instance consists of its
prominence level in dB, its azimuth offset in degrees,
its elevation offset in degrees, and whether or not it is
muted.

- Each AudioSwitchGroup instance contains a set of
audio objects with the same parameters as described
above. Additionally, an audio switch group contains
exactly one active audio object at a time.

The base interfaces used in the API are AudioElement and
AudioProperty. Both of these are observable by extending the
EventTarget API [19]. This means that the user can add and
remove event listeners. The system will dispatch an event of
type “change” when any of the associated parameters have
changed. In addition, the onchange property on these
interfaces allows the user to set an event handler for change
events.

Fig. 1 summarizes the fundamental structure mentioned
above. In the rest of this section, we describe the proposed
interfaces in detail and explain how they enable users to use
interactivity features.

A. NGAInteractivity API
The NGAInteractivity API, shown in Table I, allows the

user to list all available AudioPresets, get and set the active

Fig. 1. NGAInteractivity overview.

Audio Object NAudio Object 2

Audio Switch Group 1

NGA Interactivity

Audio Preset 1 Audio Preset 2 Audio Preset P…

…

Audio Object N+1 … Audio Object K

Prominence Level Azimuth Offset Elevation Offset Muting

Audio Switch Group M

Audio Object 1 …

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 4, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

49

AudioPreset and get the default AudioPreset. Obtaining the
default AudioPreset can be useful in case no active
AudioPreset has been set by the user. The interface also
enables the user to reset the audio scene to its default state,
and set the language used for displaying the User Interface
(UI) text and labels.

NGAInteractivity extends the EventTarget API [19]. A
“change” event will be dispatched when the AudioPresetList
or any of the parameters therein changed.

TABLE I
NGAINTERACTIVITY

Property/Method Return type Type

audioPresets AudioPresetList Read-only
property

defaultPreset AudioPreset Read-only
property

activePreset AudioPreset Read-only
property

onchange EventHandler Property

setActivePresetById(int presetId) void Method

resetToDefault() void Method

setDisplayLanguage(string
language) void Method

B. AudioPresetList API
The AudioPresetList API, shown in Table II, represents an

iterable dynamic list of AudioPresets. Exactly one
AudioPreset within a list of AudioPresets is enabled at a time.

AudioPresets within the list can be accessed either by
iterating over the list indices, or by providing a presetId to the
getAudioPresetById method. If the specified presetId
matches the id of an AudioPreset within the list, that
AudioPreset is returned, otherwise getAudioPresetById
returns null.

TABLE II
AUDIOPRESETLIST

Property/Method Return type Type

length int Read-only
property

getActivePresetById() AudioPreset or null Method

C. AudioPreset API
The AudioPreset API, shown in Table III, represents a

singular AudioPreset. The Audio Preset encapsulates a list of
AudioObjects and a list of AudioSwitchGroups, accessible to
the user via the audioObjects and audioSwitchGroups
properties respectively.

AudioPreset extends the AudioElement API and inherits
its id and label properties. It also transitively inherits the
EventTarget API, by which it will receive a “change” event
when any property within an associated AudioObject or
AudioSwitchGroup.

TABLE III
AUDIOPRESET

Property/Method Return type Type

id int Read-only
property

label string Read-only
property

audioObjects AudioObjectList Read-only
property

audioSwitchGroups AudioSwitchGroupList Read-only
property

onchange EventHandler Property

D. AudioElement API
The AudioElement API, shown in Table IV, serves as a

base class for named observable UI elements. Each
AudioElement is identified by a unique id and contains a
label describing the AudioElement in the display language
chosen by the user via the setDisplayLanguage method in the
NGAInteractivity interface.

AudioElement extends the EventTarget API [19]. The
system will dispatch a “change” event when any property
associated with that AudioElement changed.

TABLE IV
AUDIOELEMENT

Property/Method Return type Type

id int Read-only
property

label string Read-only
property

onchange EventHandler Property

E. AudioSwitchGroupList API
The AudioSwitchGroupList API, shown in Table V,

represents an iterable dynamic list of AudioSwitchGroups.
AudioSwitchGroups within the list are accessible either by

iterating over the list indices, or via the
getAudioSwitchGroupById method. If the specified
switchGroupId matches the id of an AudioSwitchGroup
within the list, that AudioSwitchGroup is returned, otherwise
null is returned.

TABLE V
AUDIOSWITCHGROUPLIST

Property/Method Return type Type

length int Read-only
property

getAudioSwitchGroupById(int
switchGroupId)

AudioSwitchGroup
or null

Method

F. AudioSwitchGroup API
The AudioSwitchGroup API, shown in Table VI,

represents a switch group of AudioObjects.
AudioSwitchGroup allows the user to list all associated
AudioObjects through the audioObjects property. Within an
AudioSwitchGroup, exactly one AudioObject is active at a
time. The AudioSwitchGroup allows the user to get and set
the active AudioObject and get the default AudioObject.

Moreover, AudioSwitchGroup objects can have a
mutingProperty, which is an optional property of type
AudioBooleanProperty. It allows the AudioSwitchGroup to
be muted, regardless of which AudioObject is active and
which is not. If muting for the AudioSwitchGroup is
disallowed, the property will be null.

AudioSwitchGroup extends the AudioElement API and
inherits its id and label properties. It also transitively inherits
the EventTarget API, by which it will receive a “change”

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 4, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

50

event when the active AudioObject or any property within an
associated AudioObject changed.

TABLE VI
AUDIOSWITCHGROUP

Property/Method Return type Type

id int Read-only
property

label string Read-only
property

mutingProperty AudioBooleanProperty
or null

Read-only
property

audioObjects AudioObjectList Read-only
property

activeAudioObject AudioObject Read-only
property

defaultAudioObject AudioObject Read-only
property

onchange EventHandler Property

setActiveAudioObjectById(int
objectId) void Method

G. AudioObjectList API
The AudioObjectList API, shown in Table VII, represents

an iterable dynamic list of AudioObjects.
AudioObjects within the list are accessible either by

iterating over the list indices, or via the getAudioObjectById
method. If the specified objectId matches the id of an
AudioObject within the list, that AudioObject is returned,
otherwise getAudioObjectById returns null.

TABLE VII
AUDIOOBJECTLIST

Property/Method Return type Type

length int Read-only
property

getAudioObjectById(int
objectId) AudioObject or null Method

H. AudioObject API
The AudioObject API, shown in Table VIII, represents a

singular AudioObject. The state of the AudioObject is
defined by its prominence level value in dB, its azimuth offset
value in degrees, its elevation offset value in degrees, and
whether or not it is muted.

Each of these features is accessible through a property on
the AudioObject interface. By changing the values of these
properties via the AudioNumericProperty and
AudioBooleanProperty interfaces, the user is able to control
the state of the AudioObject.

All of these properties are optional. If user interaction with
one of these properties is disallowed, it will return a null
value. In case all properties are null, isActionAllowed returns
false, indicating that no user interaction is possible on the
AudioObject.

The contentKind property is a number representing the
“mae_contentKind” as defined in [2].

AudioObject extends the AudioElement API and inherits
its id and label properties. It also transitively inherits the
EventTarget API, by which it will receive a “change” event
when a property of the AudioObject was changed.

TABLE VIII
AUDIOOBJECT

Property/Method Return type Type

id int Read-only
property

label string Read-only
property

isActionAllowed boolean Read-only
property

contentKind int Read-only
property

mutingProperty AudioBooleanProperty
or null

Read-only
property

prominenceLevelProperty AudioNumericProperty
or null

Read-only
property

azimuthOffsetProperty AudioNumericProperty
or null

Read-only
property

elevationOffsetProperty AudioNumericProperty
or null

Read-only
property

onchange EventHandler Property

I. AudioProperty API
The AudioProperty API, shown in Table IX, serves as a

base class for unnamed observable UI elements. Each
AudioProperty has interfaces for getting and setting its value
depending on its concrete subtype.

AudioElement extends the EventTarget API [19]. The
system will dispatch a “change” event when the property’s
value was changed.

TABLE IX
AUDIOPROPERTY

Property/Method Return type Type

onchange EventHandler Property

J. AudioBooleanProperty API
The AudioBooleanProperty API, shown in Table X,

represents a singular Boolean value. It allows the user to get
and set the value through its methods. It also allows the user
to get the default value of the property.

AudioBooleanProperty extends the AudioProperty API
and transitively the EventTarget API, by which it will receive
a “change” event when the property’s Boolean value was
changed.

TABLE X
AUDIOBOOLEANPROPERTY

Property/Method Return type Type

defaultValue boolean Read-only
property

onchange EventHandler Property

getValue() boolean Method

setValue(boolean value) void Method

K. AudioNumericProperty API
The AudioNumericProperty API, shown in Table XI,

represents a singular numeric value. It allows the user to get
and set the value through its methods. It also allows the user
to get the default value of the property.

The value of the property can be restricted to a specific
range of values that the user can access through its minValue

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 4, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

51

and maxValue properties. It is worth mentioning that the unit
of the value depends on the property it represents. For
instance, an AudioNumericProperty representing azimuth
offset will have numeric values in degrees, while an
AudioNumericProperty representing prominence gain will
have numeric values in dB.

AudioBooleanProperty extends the AudioProperty API
and transitively the EventTarget API, by which it will receive
a “change” event when the property’s numeric value was
changed.

TABLE XI
AUDIONUMERICPROPERTY

Property/Method Return type Type

minValue int Read-only
property

maxValue int Read-only
property

defaultValue int Read-only
property

onchange EventHandler Property

getValue() int Method

setValue(int value) void Method

III. PROTOTYPE IMPLEMENTATION

To prove the feasibility of the proposed API, we have
implemented a prototype system that a) contains JavaScript
bindings of the API itself as long as a native version in the
browser is not available, b) shows the usage of the API to
render functional user interfaces for audio interactivity in two
use-case applications, and c) sets up a TV environment and a
broadcaster environment to embed the use-cases in a context
similar to production systems. We explain these three parts of
the prototype system in this section.

A. JavaScript Implementation
The API proposal was written with a browser

implementation and the possibility of a later standardization
as a web standard in mind. As such, the specification
resembles the standard documents published by the W3C in
its form and content. In many cases, we resolved discussions
in the development of the API in favor of consistency with
other web standards, in order to give web developers, who are
familiar with other browser APIs, the best possible
development experience. This means that the translation of
the specification into a JavaScript [14] interface follows the
strict rules of the WebIDL [13] language used for the
proposal. There is little room for interpretation regarding the
interfaces.

To show the adequacy of the APIs for the purposes of
enabling user interfaces capable of triggering audio
interactivity in an MPEG-H Audio [2] playback, we
implemented them in the MpeghUiLib JavaScript library. For
the implementation, the TypeScript language1 was chosen for
three reasons. First, it is strictly typed, allowing us to declare
the interface types and having them checked automatically.
Through this, we enforced that our implementation’s
interfaces match the API proposal with the help of static
checking tools. Secondly, TypeScript generates pure
JavaScript code which can run on any modern and

1 https://www.typescriptlang.org/

unmodified browser. Lastly, we also provide type
declarations with the library to aid the user in developing
applications for the proposed API. TypeScript’s wide
adoption in the web developer community lowers the barrier
of entry to inspect and modify the prototype’s code.

The interfaces specified in the proposal are fully
implemented in the MpeghUiLib. The structure of
NGAInteractivity objects and its sub-objects is fully available
as described in the specification. That should allow carefully
developed applications dependent on the MpeghUiLib to
work with the browser implementation once it is available.

Contrary to the interfaces, the full implementation of the
specified behavior is in a prototype state. The functionality
that is needed for the use-case apps to work correctly is fully
implemented as specified and was the main focus of the
submission. In its current state, all parsing of MPEG-H audio
scene data and the full translation to JavaScript objects is
done correctly, as well as the dispatching of decoder events
in the case of user interaction.

The main difference between the specification and the
implementation in the MpeghUiLib is the entry point, which
is supposed to be an extension of the HTMLMediaElement as
defined in [21]. In the current phase of the proposal, we
connect to an external decoder and cannot take advantage of
HTMLMediaElements natively decoding MPEG-H in the
browser. Hence, it makes no sense to connect the
NGAInteractivity object to an HTMLMediaElement directly.
Instead, our implementation offers the MpeghUiLib
constructor to the user, so they can explicitly instantiate an
MPEG-H user interface for their decoder. The additional
parseAudioScene interface function and the user-defined
onUiAction callback are available to feed audio scenes from
the decoder to the library and user interactions from the
library to the decoder respectively. These two additional
functions will not be available in the native implementation
of the API.

Furthermore, since multi-client interactivity was not
needed for the use-case applications in the submission, the
EventTarget dispatching is not fully implemented as
specified: in the current state, only the respective element that
a change event was dispatched on will trigger its onchange
callbacks. According to the proposed API, also the parent
elements of changed properties should be notified about a
change, similar to bubbling events in the DOM specification
[19]. This offers users to implement more granular handling
of changes in their applications and is mostly useful if we
assume that property changes can also be initiated in places
other than the implemented user interface, which is not
applicable to the provided use-case apps. The only case that
needs to be considered in the current state is when the decoder
itself triggers a scene change. This proves not to be a problem
though, because the user can redraw the whole user interface
in that case, which does not require bubbling events.

B. Use-case Applications
To show the usage of the API from an application

developer’s point of view, we have included two use-case
applications in our submission. The difference between the
two applications is primarily the content being played back to
showcase the different application scenarios, specifically
audio interactivity and the emergency warning system.
Beyond that, there is no difference between the applications.

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 4, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

52

Hence, the rest of this section is applicable to both unless
stated otherwise.

The apps are divided into two main parts. The first part is
a renderer library that renders a view of the NGAInteractivity
data on an HTML page. Its main task is to receive an
NGAInteractivity object and render a DOM subtree that maps
one-to-one onto the object’s structure. As this is a library that
we intend to reuse, we chose to implement it in TypeScript
for the reasons mentioned above. In practice this is not strictly
required; a plain JavaScript implementation or any other
compatible language could also be used.

The second part is the entry point for the browser and
consists of a simple HTML page with space for the UI on the
bottom. The accompanying JavaScript file loads the
MpeghUiLib and renderer libraries and initializes them. It
also sets up the connection to the decoder which, as this is not
a browser-internal implementation, takes some additional
effort. In the prototype, a WebSocket [20] is used for
communicating the interactivity information with the external
decoder. This connection is also set up by the JavaScript file.

The final result is packed into one easily deployable file by
Webpack2. An example of a user interface as rendered by the
test application can be seen in Fig. 3. The item provides four
different presets of which the “Padrão” preset is active. Inside
the active preset, the user has access to an audio switch group
“Língua” with selectable audio objects “Inglês” and
“Francês” the former of which is active at the time.

Fig. 3. Illustrates the user interface of the use-case apps.

C. Prototype System
The use-case apps generally work fine on their own, but

require some additional components to be set up to reflect a
real broadcasting scenario. These are a) an external decoder
to do the actual MPEG-H Audio decoding and interpretation

2 https://webpack.js.org/

of the interactivity commands, and b) respective presentation
and broadcaster environments that transmit and launch the
apps from a broadcasting facility to a consumer’s simulated
TV set. An architectural overview of the demonstration setup
can be seen in Fig. 2.

For the external decoder, we use an Android-based
NVIDIA Shield3 running the Fraunhofer IIS Android Media
Player App. The App is capable of decoding MPEG-H Audio
from local MP4 [16] files, as well as network streams
containing MPEG-H and using transport formats like MPEG
DASH [15], Transport Stream [17] or plain fragmented MP4
files with progressive HTTP download. We chose MPEG
DASH and progressive MP4 playback over the network as
content delivery options for the use-case test applications.
This is done to avoid pre-deploying content to the decoding
device and instead have the content come from the
presentation environment for a more realistic delivery
scenario.

In addition to the content delivery via HTTP, the player
app listens for JSON-formatted playback commands on a
UDP port. These commands also contain the type and URL
of the resource to be played back, so the use-case apps have
control over the playback, even though they are running on
another device.

Furthermore, once the playback is started, the player will
listen to WebSocket connections on another TCP port. This
second, bidirectional connection is used for the transmission
of user interactivity data. The player uses an established
connection to send audio scene information including
available presets, audio objects, switch groups, labels, and
interactive properties with their ranges to the presentation
environment. The user interface uses the same connection to
send user interactivity commands to the player. All
information is sent in an XML [18] format and is a detail of
the player implementation.

The decoding is done on an external device in order to
demonstrate the capability to deploy the system as a
distributed architecture across multiple devices. At the same
time, the already available features in the Fraunhofer IIS
Android Media Player Application could be used during the
evaluation. In practice, the player and the user interface can
be encapsulated in a single system; a player can run on the
same device as the user interface, they can draw to the same
screen or buffer, and the connection does not need to happen

3 https://www.nvidia.com/en-us/shield/

Fig. 2. Shows the architecture overview of the prototype system. The demo applications are pushed from the broadcaster container to the prototype
receiver, where the runtime prototype containing the use-case apps is executed and controls the decoding on the NVIDIA Shield.

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.1. Web Link: http://dx.doi.org/10.18580/setijbe.2021.1

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.1. Web Link: http://dx.doi.org/10.18580/setijbe.2021.1

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 2, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

53

over a WebSocket, but can also be achieved through other
protocols or natively with a suitable decoder API.

Finally, the presentation environment and the broadcaster
environment were submitted as LXD4 containers due to the
easy handling and deployment in a test environment. The
broadcaster container is mainly responsible to push the use-
case apps and content from the broadcaster to the presentation
environment container running on a consumer’s simulated
TV set. The presentation environment container is then
responsible for delivering the content to the decoder (using
the Apache 2 HTTP server5 in the demonstration) and running
the use-case apps to render the HTML user interfaces on a
Chromium Browser6.

IV. EVALUATION

The “SBTVD Forum – TV 3.0 – CfP Phase 2 / Testing and
evaluation” document [12] defines 17 use-cases for the
Application Coding component. Two of these use cases are
addressing next-generation audio and all corresponding
requirements are fulfilled by our Application Coding
proposal for MPEG-H Audio. Table XII lists these fulfilled
use-cases and requirements.

For evaluation purpose, we have defined and conducted
five specific test procedures, which allow an easy evaluation
of the proposed system as required in [12]. Each of these test
procedures covers a unique feature of MPEG-H Audio [2]
that can be mapped to a concrete requirement specified in [12]
as shown in Table XIII. It is important to note, that the more
advanced tests (4 and 5) are fulfilling multiple requirements.
For example, test procedure 5 is fulfilling AP 13.1 and AP
14.4 from [12].

TABLE XIII
TEST PROCEDURES

Test
procedure MPEG-H Audio feature SBTVD requirement

1 Preset interactivity AP 14.4 - 3D object-based
immersive audio interaction

2 Switch group interactivity AP 14.4 - 3D object-based
immersive audio interaction

3 Gain interactivity AP 14.4 - 3D object-based
immersive audio interaction

4 Position interactivity AP 14.5 –3D media
positioning and interaction

5 Emergency warning
AP 13.1 – emergency
warning information
interactive application

As an example, for one of these test procedures, Fig. 4
illustrates the MPEG-H Audio UI of test procedure 3. The
gain of the “Língua” switch group can be decreased or
increased by moving the corresponding “ProminenceLevel”

4 https://linuxcontainers.org/lxd/introduction/
5 https://httpd.apache.org/

slider to the left or right respectively. Since MPEG-H Audio
[2] includes advanced Loudness Normalization functionality
[7], the overall loudness of the audio output will stay the
same, and only the balance between the “Língua” object and
the rest of the audio scene will change.

Fig. 4. Illustrates the prototype UI while decoding an audio item with 4
presets. The “ProminenceLevel” slider can be used to control the balance
between the corresponding audio switch group or audio object in relation to
the overall audio scene.

V. OUTLOOK

The previous sections describe the design, implementation
and internal evaluation of our approach to enable next-
generation 3D interactive audio for the Application Coding
component of the SBTVD TV 3.0 Project using the MPEG-H
Audio system. Our proposal is a proof-of-concept that
demonstrates the required features according to the TV 3.0
CfP [1]. After the TV 3.0 Phase 2 evaluation process will be
finalized, it is foreseen that all accepted proposals will be
adapted and further refined for standardizing the best
solutions for the TV 3.0 Application Coding layer. As an
active member of the SBTVD Forum, Fraunhofer IIS will
continue to support the standardization effort and is
committed to work closely with the SBTVD Forum experts
for integrating a 3D object-based audio API into the TV 3.0
suite of standards according to the Forum decisions.

It should be noted that the user interaction in the illustrated
scenario benefits from bidirectional communication between
the decoder and the user interface component. The decoder
needs to be notified about user interactions and has to adapt
the audio scene rendering accordingly. On the other hand, the
rendered user interface depends on the metadata present in
the audio stream and has to react to changes therein. For
ensuring a high quality of experience, it is desired to have low
latency between an interaction and the expected effect, which
is achieved with a close integration of the two components.

6 https://www.chromium.org/Home

TABLE XII
APPLICATION CODING REQUIREMENTS (EXCERPT FROM [12])

Use case Minimum technical specification
Over the air

delivery
Internet
delivery

AP13 Enable emergency warning information
delivery using an interactive application AP13.1 Emergency warning information interactive

application desirable desirable

AP14 Support for immersive TV AP14.4 3D object-based immersive audio interaction required required
AP14.5 3D media positioning and interaction required required

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 4, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

54

The event-based design of our proposal enables this close
integration and could optimally be achieved by a native
implementation in Ginga-HTML5. As a less strict option,
bidirectional communication via WebSockets can be used to
enable this form of close integration of the components, as
shown in the submitted prototype.

It would also be possible to implement the desired behavior
as a library on top of a REST API in Ginga-CC-WebServices
similar to the existing SBTVD TV 2.5 specification [10].
However, as this is a fundamentally unidirectional mode of
communication, active polling of the REST API or a different
method of notifying the user interface about bitstream-
triggered UI changes has to be implemented in order to ensure
a good quality of the experience.

Similarly, the submitted setup for TV 3.0 is using an
MPEG-H decoder running on an external device with stereo
or binaural headphone output for the prototype. However, the
described API design is not restricted to this setup and can
also be used with other audio outputs like immersive AVRs,
soundbars or integrated TV speakers.

VI. CONCLUSION

With its standardized metadata and decoder interfaces, the
MPEG-H Audio system [2] offers a stable foundation for
extending HTML5 web APIs for controlling advanced audio
features in a device-independent and interoperable fashion. It
was proposed as a candidate technology for the Application
Coding component of the SBTVD TV 3.0 Project Call for
Proposals [1]. This API extends the Ginga-HTML5 standard
[9] and enables applications to offer user interaction with
MPEG-H interactivity features, like switching presets and
audio switch groups, as well as adjusting the prominence
level and position of audio objects.

A prototype JavaScript implementation of the API was
submitted to the SBTVD Forum for testing and evaluation.
Accompanying runtime prototypes for broadcast and receiver
environments show the feasibility of the proposal. The
prototype environments employ a distributed architecture
including an external decoder, illustrating the flexibility of
the MPEG-H ecosystem.

Furthermore, following the evaluation test procedures
described in this paper, the proposed API fulfills the TV 3.0
Application Coding requirements for “3D object-based
immersive audio interaction”, “3D media positioning and
interaction” and support for “emergency warning information
interactive applications”.

ACKNOWLEDGMENT

The authors would like to thank the SBTVD Forum for the
efforts to organize the TV 3.0 Project and support us during
the development of the proposal, especially Professor
Marcelo F. Moreno, who is chairing the Application Coding
working group in the SBTVD Technical Module and has led
the technical foundation of the proposal together with Rafael
Diniz in the paper on immersive audio properties for NCL
media elements [11].

REFERENCES

[1] Brazilian Digital Terrestrial Television System Forum. (2020, July 17).
“Call for Proposals: TV 3.0 Project”. [Online]. Available:
https://forumsbtvd.org.br/wp-content/uploads/2020/07/SBTVDTV-3-
0-CfP.pdf

[2] “Information technology - High efficiency coding and media delivery
in heterogeneous environments - Part 3: 3D audio,” International
Organization for Standardization (ISO), Geneva, Standard ISO/IEC
23008-3:2019, 2019.

[3] Fraunhofer Audio Blog. (2019, Aug. 27). “MPEG-H Audio selected to
enhance Brazilian digital television with immersive and personalized
sound”, [Online]. Available:
https://www.audioblog.iis.fraunhofer.com/mpegh-brazil-isdbtb

[4] “Televisão digital terrestre - Codificação de vídeo, áudio e
multiplexação - Parte 2: Codificação de áudio,” ABNT NBR 15602-
2:2020. [Online]. Available: https://forumsbtvd.org.br/legislacao-e-
normas-tecnicas/normas-tecnicas-da-tv-digital/english/

[5] “Televisão digital terrestre - Multiplexação e serviços de informação
(SI),” ABNT NBR 15603:2020. [Online]. Available:
https://forumsbtvd.org.br/legislacao-e-normas-tecnicas/normas-
tecnicas-da-tv-digital/english/

[6] “Televisão digital terrestre – Receptores,” ABNT NBR 15604:2020.
[Online]. Available: https://forumsbtvd.org.br/legislacao-e-normas-
tecnicas/normas-tecnicas-da-tv-digital/english/

[7] R. L. Bleidt et al., “Development of the MPEG-H TV Audio System for
ATSC 3.0,” in IEEE Transactions on Broadcasting, vol. 63, no. 1, pp.
202-236, March 2017, doi: 10.1109/TBC.2017.2661258.

[8] A. Murtaza and S. Meltzer, “First Experiences with the MPEG-H TV
Audio System in Broadcast,” SET INTERNATIONAL JOURNAL OF
BROADCAST, ISSN Print: 2446-9246 ISSN [Online]. 2446-9432. doi:
10.18580/setijbe.2018.6. Available:
https://www.set.org.br/ijbe/ed4/Artigo%206.pdf

[9] “Televisão digital terrestre - Codificação de dados e especificações de
transmissão para radiodifusão digital - Parte 10: Ginga-HTML5 -
Especificação do perfil HTML5 no Ginga”, ABNT NBR 15606-
10:2021. [Online]. Available: https://forumsbtvd.org.br/legislacao-e-
normas-tecnicas/normas-tecnicas-da-tv-digital/english/

[10] “Televisão digital terrestre - Codificação de dados e especificações de
transmissão para radiodifusão digital - Parte 11: Ginga CC
WebServices - Especificação de WebServices do Ginga Common
Core”, ABNT NBR 15606-11:2021. [Online]. Available:
https://forumsbtvd.org.br/legislacao-e-normas-tecnicas/normas-
tecnicas-da-tv-digital/english/

[11] R. Diniz and M. Moreno. “Immersive audio properties for NCL media
elements”, in Anais Estendidos do XXV Simpósio Brasileiro de
Sistemas Multimídia e Web, Florianópolis, 2019, pp. 195-197, doi:
https://doi.org/10.5753/webmedia_estendido.2019.8164. W.-K.
Chen, Linear Networks and Systems. Belmont, CA: Wadsworth,
1993, pp. 123–135.

[12] Brazilian Digital Terrestrial Television System Forum. (2021, Mar.
15). “CfP Phase 2/Testing and Evaluation: TV 3.0 Project”. [Online].
Available: https://forumsbtvd.org.br/wp-
content/uploads/2021/03/SBTVD-TV_3_0-P2_TE_2021-03-15.pdf

[13] C. McCormack. (2016, Dec. 15). WebIDL Level 1. W3C
Recommendation [Online]. Available:
https://www.w3.org/TR/WebIDL-1/

[14] ECMA International. “ECMAScript® 2021 language specification,”
ECMA-262, 12th edition, June 2021. [Online]. Available:
http://www.ecma-international.org/publications/standards/Ecma-
262.htm

[15] “Information Technology - Dynamic Adaptive Streaming Over HTTP
(DASH) -- Part 1: Media Presentation Description and Segment
Formats,” International Organization for Standardization (ISO),
Geneva, Standard ISO/IEC 23009-1:2019, 3th edition, 2019.

[16] “Information Technology - Coding of Audio-Visual Objects -- Part 12:
ISO Base Media File Format,” International Organization for
Standardization (ISO), Geneva, Standard ISO/IEC 14496-12:2020, 6th
edition, 2020.

[17] “Information Technology - Generic coding of moving pictures and
associated audio information -- Part 1: Systems,” International
Organization for Standardization (ISO), Geneva, Standard ISO/IEC
13818-1:2018, 6th edition, 2018.

[18] T. Bray, J. Paoli, M. Sperberg-McQueen. (2008, Nov.). Extensible
Markup Language (XML) 1.0. W3C Recommendation. [Online].
Available: https://www.w3.org/TR/xml/

[19] Y. Zhu et al. (2021, Jun.). DOM Living Standard. W3C
Recommendation. [Online]. Available: https://www.w3.org/TR/dom/

[20] I. Fette, A. Melnikov. “The WebSocket Protocol” IETF, Request for
Comments (RFC 6455), Dec. 2011. [Online]. Available: https://rfc-
editor.org/rfc/rfc6455.txt

[21] S. Faulkner, A. Eicholz, T. Leithead, A. Danilo, S. Moon. “HTML
5.2.” W3C Recommendation, Jan. 2021. [Online]. Available:
https://www.w3.org/TR/html52/

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 4, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

55

Oliver Major received both his B.Sc.
and his M.Sc. degrees in computer
science at the RWTH Aachen University
in Aachen, Germany in 2014 and 2016
respectively.

Between 2014 and 2015, he gained
some experience with network
communication and integrated platforms
as a Student Assistant at devolo AG in
Aachen, Germany. After his studies, he

joined the Mobile Audio Rendering group at the Fraunhofer
Institute for Integrated Circuits (IIS) in Erlangen, Germany as
a Research Engineer in 2017, where his main topics were
binaural rendering, platforms and web technologies. After
joining the Web Media Technologies group in 2020, his focus
shifted more towards system architecture and web
technologies.

Ziad Shaban received his B.Sc. degree
in electrical engineering -
communications and electronics from
the Jordan University of Science and
Technology, Irbid, Jordan in 2013 and
his M.Sc. degree in communication and
multimedia engineering from the
Friedrich-Alexander University
Erlangen-Nürnberg, Erlangen,

Germany, in 2015.
Between 2013 and 2016, he was active as a Research

Assistant in the fields of software-defined radio and wireless
communication at the Fraunhofer Institute for Integrated
Circuits (IIS) in Erlangen, Germany, where he also wrote his
thesis titled “A Study of a Testbed for Multi-channel
Simulators”. In 2016, he joined the Multimedia Transport
group of Fraunhofer IIS as a Research Engineer with a focus
on the research and development of streaming technologies.
As of 2020, he has been a member of the Web Media
Technologies group.

Bernd Czelhan received the B. Sc. in 2011
and M. Sc. in 2012 degrees in Computer
Science from the Technische Hochschule
Nürnberg Georg Simon Ohm, in
Nuremberg, Germany.

In 2012, he joined the Fraunhofer
Institute for Integrated Circuits (IIS) as a
research engineer, where his main working
topic is the next-generation audio codec

MPEG-H and Web development. Since 2020, he is heading
the Web Media Technologies group. In addition, he is
supporting the practical implementation of MPEG-H. He is
especially interested in Web technologies and modern
transport mechanism and system aspects of today’s audio
codecs, such as MMT, DASH/Route, and hybrid delivery.

Adrian Murtaza received his M.Sc.
degree in Communication Systems from
the École Polytechnique Fédérale de
Lausanne, Switzerland in 2012 with a
thesis on “Backward Compatible Smart
and Interactive Audio Transmission”.
Upon graduation he joined Fraunhofer
IIS, where he works as a Senior Manager,
Technology and Standards.

Adrian joined MPEG in 2013 and since then contributed to
development of various audio technical standards in
MPEG-D and MPEG-H. He serves as Fraunhofer's Standards
Manager in a number of industry standards bodies, including
SBTVD, ATSC, CTA, DVB, HbbTV and SCTE, and is the
co-author of multiple specifications in those groups.

More recently he focused on specification of Next-
Generation Audio delivery and transport in ATSC 3.0
systems and MPEG-2 Transport Stream based systems, as
well as on enabling of MPEG-H Audio services in different
broadcast and streaming ecosystems. With a strong interest in
VR/AR media solutions he is actively involved in MPEG-I
efforts targeting future immersive applications.

This open access article is distributed under a Creative Commons Attrribution (CC-BY) license.
https://set.org.br/ijbe/ doi: 10.18580/setijbe.2021.4. Web Link: http://dx.doi.org/10.18580/setijbe.2021.4

SET INTERNATIONAL JOURNAL OF BROADCAST ENGINNERING - SET IJBE V.7, 2021, Article 4, 9p.
© 2021 SET / ISSN Print: 2446-9246 | ISSN Online: 2446-9432

Received in 2021-08-16 | Approved in 2021-12-07

56

